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Abstract
A description of the destruction of states on the grounds of quantum mechanics
rather than quantum field theory is proposed. Several kinds of maps called
supertraces are defined and used to describe the destruction procedure. The
introduced algorithm can be treated as a supplement to the von Neumann–
Lüders measurement. The discussed formalism may be helpful in a description
of EPR-type experiments and in quantum information theory.

PACS numbers: 03.65.Ta, 03.65.−w

1. Introduction

In this paper, we propose a solution to the following problem: how to describe the destruction
of a particle on the level of quantum mechanics with finite degrees of freedom. This question
arises when Einstein–Podolsky–Rosen-type experiments [1] (see also, e.g., [2]) or the tests of
quantum mechanical state reduction (see, e.g., [3]) are studied. In this type of experiment,
two particles are produced in an entangled state and sent to two measurement devices at
a distance where correlated quantities are measured at the same time. Prediction of the
correlation between the data does not cause any problems in such an ideal experiment, but if
both measurements are not really performed at the same time we have to take into account
the fact that a particle is irreversibly absorbed by a detector during measurement. This has
nothing in common with the annihilation of a particle in quantum field theory; therefore, to
avoid any confusion we shall use the word ‘destruction’ to describe this kind of processes.

Evidently, if we take into account the destruction we have to consider open quantum
mechanical systems. We make the idealization relying on the assumption that the destruction
process is instantaneous, therefore its description should not involve any dynamics. For this
reason the methods of quantum field theory are not appropriate for our purpose since QFT
can be applied to open systems only if the dynamics is given, e.g. by coupling the fields to
external classical sources. Moreover, in QFT formalism one has to use an infinite direct sum
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Figure 1. Destruction of a particle in a part of a box: (a) there is a particle in the box, (b) the
box is divided by a barrier, (c) destruction in the region �—there is no particle in the grey part of
the box.

of tensor product Hilbert spaces (asymptotic Fock space) while we would like to describe
quantum systems with finite degrees of freedom.

Destruction of a particle in a detector usually occurs when some quantum numbers (e.g.
spin, position or momentum) of the particle belong to a specified subset of spectrum of the
corresponding observable. Therefore, we must have a quantum system and a detector which
checks if the particle quantum numbers are inside a given subset of spectrum. If the answer is
‘yes’, the particle is destroyed.

In this paper, we introduce a mathematical framework which allows us to define the
destruction process based on the principles of quantum mechanics. The physical examples
of destruction, including spatial localization of the particles as well as application of the
destruction to the calculation of quantum correlations, will be given in forthcoming papers.

This paper is organized as follows. In section 2 we consider destruction of a one-particle
state, first intuitively, then formally. In the next section we discuss the space of states necessary
for the description of destruction of two-particle states. In section 4 we introduce supertraces
and study their basic properties. Sections 5 and 6 deal with the destruction of two-particle
systems of distinguishable and identical particles, respectively. We illustrate each of these
cases by examples.

2. Destruction of one particle

We begin with the discussion of a toy model in which the destruction of a single particle takes
place in a given region of space. In the framework of this model we formulate a description
of the process of destruction of a one-particle state taking physical intuition as a guiding
principle. And then we consider the general case, not necessarily related to the localization of
the particle.

Thus, let us consider a box containing one particle (see figure 1(a)) in the state given
by the density matrix ρ. Now we divide the box into two parts (e.g. by a non-penetrating
barrier—figure 1(b)). We destroy the particle if it is inside the region� of the box (figure 1(c)).

First, let us discuss the situation when we check if the particle is inside �. It means that
we first perform a measurement with the selection of the observable ��, where �� is the
projector onto the subspace of the states localized in �. The measurement of �� gives either
1 if the particle is inside the region �, or 0 if it is outside �. The particle is destroyed if the
measurement of �� gives 1, i.e. its state is replaced by the vacuum state. Thus, in this case,
the destruction procedure is done in two immediate steps:
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(i) the initial density matrix ρ is reduced to

ρ ′ =



��ρ��

Tr(ρ��)
if the particle is inside�

�⊥
�ρ�

⊥
�

Tr(ρ�⊥
�)

if the particle is outside�
(1)

where �⊥
� = I − �� (I denotes the identity operator);

(ii) if ρ ′ = ��ρ��/Tr(ρ��), then it is mapped onto vacuum density matrix ρvac, otherwise
it is left unchanged, so

ρ ′′ =



ρvac if the particle is inside�

�⊥
�ρ�

⊥
�

Tr(ρ�⊥
�)

if the particle is outside�.
(2)

But what happens if we place the barrier, but do not check if the particle is inside �? This
situation corresponds to a measurement with no selection of the observable ��. The particle
is either inside � with the probability Tr(ρ��) or outside � with the probability Tr(ρ�⊥

�),
thus

(i) first, the density matrix ρ is reduced to

ρ ′ = ��ρ�� + �⊥
�ρ�

⊥
� (3)

(ii) then, after the destruction we get either the vacuum with the probability Tr(ρ��) or the
one-particle state with the probability Tr(ρ�⊥

�), so

ρ ′′ = �⊥
�ρ�

⊥
� + Tr(ρ��)ρvac. (4)

It is easy to see that in both cases the map ρ �→ ρ ′′ is linear on the combinations
µρ1 + (1 − µ)ρ2, where µ ∈ [0, 1] and ρ1, ρ2 are the density matrices, i.e. in the convex set
of density matrices.

Now, let us rewrite the above procedure in a slightly more abstract and general context,
not necessarily related to the localization of a particle. Let H be the Hilbert space of states for a
particle. The one-particle states (density matrices) form a convex subset of the endomorphism
space of H (i.e. ρ ∈ End(H)). In order to describe the system if destruction occurs we
must introduce the vacuum state |0〉 and one-dimensional vacuum space spanned by |0〉, i.e.
H0 ≡ span{|0〉}. The vacuum vector |0〉 is orthogonal to any vector from H and every
observable acts trivially on it. Therefore, the Hilbert space of the system under consideration
is a direct sum H ⊕ H0, and the states are mixtures of the elements from End(H) and
End(H0). Furthermore, let �̂ be an arbitrary observable with the spectrum � and � be a
subset of the spectrum. Denote the subspace spanned by all the eigenvectors corresponding
to the eigenvalues from the subset � by H� and the projector onto this subspace by ��.
If the particle state is an element of End(H�) then the particle is destroyed, otherwise it is
not.

Therefore, let us find a linear map from End(H) to End(H0) which leaves the trace
invariant. It is enough to restrict ourselves to the endomorphisms of the form |χ〉〈φ|, where
|χ〉, |φ〉 ∈ H. This map must act on these endomorphisms in the following way:

End(H) � |χ〉〈φ| �→ c|0〉〈0| ∈ End(H0). (5)

Because Tr(|χ〉〈φ|) = 〈φ|χ〉 and Tr(c|0〉〈0|) = c, it follows that c = 〈φ|χ〉. Therefore, this
leads to the following definition.
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Definition 1. The supertrace T̂r is a linear map T̂r: End(H) → End(H0) such that its action
on the endomorphism of the form |χ〉〈φ| ∈ End(H) is given by the following formula

T̂r(|χ〉〈φ|) = 〈φ|χ〉|0〉〈0|. (6)

We call T̂r a supertrace1 because it is a superoperator, i.e. it is the operator in the
endomorphism space (see, e.g., [4]).

It is easy to check that if the set of vectors {|a〉} is an orthonormal basis2 in H and
L̂ = ∑

aa′ Laa′ |a〉〈a′| ∈ End(H) is a linear operator, then

T̂r(L̂) =
∑
aa′

Laa′δaa′ |0〉〈0| = Tr(L̂)|0〉〈0| (7)

(δaa′ denotes the Kronecker delta).
Applying the T̂r operation to the �-projected part of ρ (i.e. ��ρ��) we can formalize

the procedure which gave us the density matrix ρ ′′ by the following definitions.

Definition 2. A destruction with selection in the set � of one-particle state ρ ∈ End(H) is
defined by the map3 Ds

�: End(H) → End(H) ⊕ End(H0), such that

Ds
�(ρ) =




T̂r(��ρ��)

Tr(ρ��)
if the measurement of�� gives 1

�⊥
�ρ�

⊥
�

Tr(ρ�⊥
�)

if the measurement of �� gives 0.

(8)

Definition 3. The destruction with no selection in the set� of a one-particle state ρ ∈ End(H)

is defined by the map D�: End(H) → End(H) ⊕ End(H0), such that

D�(ρ) = �⊥
�ρ�

⊥
� + T̂r(��ρ��). (9)

Note that Ds
� and D� are superoperators. In quantum information theory superoperators

similar to D� are considered as choice superoperators describing the coherent information
transfer between subsets of the entire system [5].

It is easy to check that applying the destruction maps Ds
� and D� to the density matrix ρ

describing a state of a particle in a box (see above), we get the density matrices ρ ′′ from (2)
and (4), respectively, when �̂ is the position operator, � = � and ρvac = |0〉〈0|.

We have to show that the endomorphisms Ds
�(ρ) and D�(ρ), which we get after the

destruction, are density matrices. In other words, we have to prove that Ds
� and D� are the

Kraus maps [6]. This is guaranteed by the following proposition.

Proposition 1. The superoperators Ds
� and D� from the definitions 2 and 3, respectively, are

Kraus maps.

Proof. Indeed, Ds
�(ρ) and D�(ρ) are Hermitian because �

†
� = ��, and Tr(ρ��) and

Tr(ρ�⊥
�) are real. Next, Tr(T̂r(��ρ��)) = Tr(ρ��), so Tr

(
Ds

�(ρ)
) = 1. Because

�⊥
� = I − ��, we have

Tr(D�(ρ)) = Tr(ρ�⊥
�) + Tr(ρ��) = Tr(ρ) = 1. (10)

1 We point out to avoid confusion that this supertrace has nothing in common with the supertrace Str used in
supersymmetry.
2 If we consider continuous bases, we must replace sums and Kronecker deltas by integrals and Dirac deltas,
respectively.
3 We shall frequently use the more general and shorter term ‘map’ instead of ‘superoperator’ if it does not lead to
misunderstandings.
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The proof that Ds
�(ρ) and D�(ρ) are non-negative is obvious. �⊥

�ρ�
⊥
� is non-negative

because it is an orthogonal projection of a non-negative ρ. T̂r(��ρ��) = Tr(ρ��)|0〉〈0|
is non-negative because Tr(ρ��) � 0. Thus Ds

�(ρ) is non-negative. D�(ρ) is also non-
negative, because it is the sum of two non-negative terms, which act in orthogonal subspaces.
So the maps Ds

� and D� are the Kraus maps. �

We now illustrate the destruction procedure in the case when the observable �̂ is not the
position operator by the following example.

Example 1. Consider a spin- 1
2 particle. We assume that the destruction with no selection

takes place if the z-component of the spin is 1
2 . In this case �̂ = Ŝ3 and its spectrum is

� = {− 1
2 ,

1
2

}
and � = {

1
2

}
. The one-particle Hilbert space is H = span{|↑〉, |↓〉}, the

subspace H� = span{|↑〉} and the corresponding projection operator is �� =|↑〉〈↑|, so
�⊥

� =|↓〉〈↓|. The most general density matrix in this case is

ρ = w|↑〉〈↑| + c|↑〉〈↓| + c∗|↓〉〈↑| + (1 − w)|↓〉〈↓|
where w ∈ [0, 1], c ∈ C and |c|2 � w(1 − w). After the destruction we get the new state

D�(ρ) = w|0〉〈0| + (1 − w) |↓〉〈↓|.
So we get the vacuum state with the probability w and the particle with S3 = − 1

2 with the
probability 1 − w.

In this case, it is easy to find the von Neumann entropy of the state before and after the

destruction. The eigenvalues of ρ are ρ± = 1
2 ±

√(
1
2 − w

)2
+ |c|2, so the von Neumann

entropy before destruction is

S(ρ) = −Tr(ρ lnρ) = −ρ+ lnρ+ − ρ− lnρ−.

Because ∂S(ρ)/∂|c|2 � 0 for 0 � |c|2 � w(1 − w), then for a given value of w the entropy
is maximal for the state with c = 0 and for these states the entropy is equal to S(ρ) =
−w lnw − (1 −w) ln(1 −w). When |c|2 = w(1 −w) the states are pure and their entropy is
S(ρ) = 0.

The eigenvalues of D�(ρ) are w and 1 − w, so the von Neumann entropy after the
destruction is

S(D�(ρ)) = −Tr(D�(ρ) ln(D�(ρ))) = −w lnw − (1 − w) ln(1 − w)

and S(D�(ρ)) � S(ρ), as it was expected from the theorem that the measurements with no
selection increase entropy (see [7]).

Note that the destruction with selection gives in this case

Ds
�(ρ) =

{|0〉〈0| if the measurement of �� gives 1
|↓〉〈↓| if the measurement of �� gives 0.

Thus S
(
Ds

�(ρ)
) = 0 and we have

S
(
Ds

�(ρ)
)

� S(ρ)

i.e. the destruction with selection can decrease entropy.
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3. Destruction in two-particle system—the space of states

Now we discuss the space of states necessary for the description of destruction of two-particle
states of particles ‘a’ and ‘b’. Let Ha and Hb be the Hilbert spaces for the particles ‘a’ and
‘b’, respectively. The two-particle Hilbert space is the tensor product Ha ⊗ Hb. The state of
the system is then described by the density matrix ρ, which is an endomorphism of the space
Ha ⊗ Hb, i.e. ρ ∈ End(Ha ⊗ Hb). If one introduces in Ha an orthonormal basis {|a〉} and
similarly in Hb an orthonormal basis {|b〉}, then one can write the density matrix ρ in the form

ρ =
∑
aa′bb′

ρaba′b′(|a〉 ⊗ |b〉)(〈a′| ⊗ 〈b′|) =
∑
aa′bb′

ρaba′b′ |a〉〈a′| ⊗ |b〉〈b′|. (11)

In the case of identical particles the two-particle Hilbert space is, of course, the projection
onto the symmetric or antisymmetric part of Ha ⊗ Hb, thus we must additionally require the
appropriate behaviour of the coefficients ρaba′b′ under the exchange of indices, i.e.

ρaba′b′ = ρbaa′b′ = ρabb′a′ = ρbab′a′ (symmetric case) (12a)
ρaba′b′ = −ρbaa′b′ = −ρabb′a′ = ρbab′a′ (antisymmetric case). (12b)

But such a description of the composite quantum system is not enough if we consider
the measurement by the apparatus (mentioned in the previous sections) which can destroy the
state. The reason is that the density matrix (11) can describe only the two-particle states of
the system, while after such a measurement we could have either a one-particle state which
evolves in time or a vacuum state.

This issue can be easily solved as in the case of one particle (see section 2), i.e. by
introducing the one-dimensional vacuum space H0 ≡ span{|0〉}, and taking the direct sums
Ha ⊕H0 and Hb ⊕H0 instead of Ha and Hb, respectively. The corresponding tensor product
space can be decomposed in the obvious way(Ha ⊕ H0

) ⊗ (Hb ⊕ H0
) = (Ha ⊗ Hb) ⊕ ((Ha ⊗ H0

) ⊕ (H0 ⊗ Hb

)) ⊕ (H0 ⊗ H0). (13)

The first term on the right-hand side of (13), i.e. Ha ⊗ Hb, describes two-particle states; the
second and third terms, i.e.

(Ha ⊗ H0
) ⊕ (H0 ⊗ Hb

)
, represent one-particle states; while the

last term, H0 ⊗ H0, is the zero-particle state. In the case of distinguishable particles we can
take the terms Ha ⊗H0 or H0 ⊗Hb as the Hilbert space of the system after the destruction of
the particle ‘b’ or ‘a’, respectively. For identical particles we have to consider the one-particle
Hilbert space as a subspace of the sum (H⊗H0)⊕ (H0 ⊗H), where Ha = Hb ≡ H, because
we do not know if the particle ‘a’ or ‘b’ was destroyed.

The bases in the endomorphism spaces of the mentioned two-, one- and zero-particle
Hilbert spaces are

(|a〉 ⊗ |b〉)(〈a′| ⊗ 〈b′|) = |a〉〈a′| ⊗ |b〉〈b′| (End(Ha ⊗ Hb)) (14a)
(|a〉 ⊗ |0〉)(〈a′| ⊗ 〈0|) = |a〉〈a′| ⊗ |0〉〈0| (End(Ha ⊗ H0)) (14b)
(|0〉 ⊗ |b〉)(〈0| ⊗ 〈b′|) = |0〉〈0| ⊗ |b〉〈b′| (End(H0 ⊗ Hb)) (14c)
(|0〉 ⊗ |0〉)(〈0| ⊗ 〈0|) = |0〉〈0| ⊗ |0〉〈0| (End(H0 ⊗ H0)). (14d)

In the case of identical particles Ha = Hb = H and we consider the same basis in Ha and
Hb, i.e. {|a〉} = {|b〉}. The basis maps (14a)–(14d ) should then be supplemented by the basis
endomorphisms

(|a〉 ⊗ |0〉)(〈0| ⊗ 〈b′|) = |a〉〈0| ⊗ |0〉〈b′| (15a)
(|0〉 ⊗ |b〉)(〈a′| ⊗ 〈0|) = |0〉〈a′| ⊗ |b〉〈0| (15b)

which intertwine vectors from H ⊗ H0 to H0 ⊗ H and vice versa.
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We point out that dim((H⊗H0)⊕ (H0 ⊗H)) = 2 dim(H⊗H0), so for identical particles
we must choose an irreducible subspace of (H ⊗ H0) ⊕ (H0 ⊗ H) which corresponds to the
space of one-particle states.

4. Supertraces

The partial traces Tra: End(Ha ⊗ Hb) → End(Hb) and Trb: End(Ha ⊗ Hb) → End(Ha) are
widely used in various contexts (see, e.g., [8]), but they cannot be used for the description of
the destruction. Thus, our purpose is, in an analogy to definition 1, to introduce maps that
preserve the trace and map End(Ha ⊗Hb) to End(H0 ⊗H0), End

(Ha ⊗H0
)

or End
(H0 ⊗Hb

)
.

Let us start with the map End(Ha ⊗ Hb) → End(H0 ⊗ H0). Of course, we have

End(Ha ⊗ Hb) � |χ〉〈φ| ⊗ |ψ〉〈ξ | �→ c|0〉〈0| ⊗ |0〉〈0| ∈ End(H0 ⊗ H0). (16)

The condition that the trace must be preserved leads to c = Tr(|χ〉〈φ| ⊗ |ψ〉〈ξ |) =
〈φ|χ〉〈ξ |ψ〉}, so we can define the following linear map4:

Definition 4. The tensor product supertrace T̂r: End(Ha ⊗ Hb) → End(H0 ⊗H0) is a linear
map such that

T̂r(|χ〉〈φ| ⊗ |ψ〉〈ξ |) = 〈φ|χ〉〈ξ |ψ〉(|0〉〈0| ⊗ |0〉〈0|) (17)

for any |χ〉, |φ〉 ∈ Ha and |ψ〉, |ξ〉 ∈ Hb. Because of linearity, we can extend this map on the
whole space End(Ha ⊗ Hb).

Next, we need maps which transform the two-particle state into one-particle state. They
are given by the following definition.

Definition 5. The linear maps

left partial supertrace T̂rL: End(Ha ⊗ Hb) → End
(H0 ⊗ Hb

)
right partial supertrace T̂rR : End(Ha ⊗ Hb) → End

(Ha ⊗ H0
)

inner partial supertrace T̂rI : End(Ha ⊗ Hb) → End
((Ha ⊗ H0

) ⊕ (H0 ⊗ Hb

))
external partial supertrace T̂rE : End(Ha ⊗ Hb) → End

((Ha ⊗ H0) ⊕ (H0 ⊗ Hb

))
act on the endomorphisms of the form |χ〉〈φ| ⊗ |ψ〉〈ξ | ∈ End(Ha ⊗Hb) in the following way

T̂rL(|ψ〉〈χ | ⊗ |φ〉〈ξ |) = 〈χ |ψ〉(|0〉〈0| ⊗ |φ〉〈ξ |) (18a)

T̂rR(|ψ〉〈χ | ⊗ |φ〉〈ξ |) = 〈ξ |φ〉(|ψ〉〈χ | ⊗ |0〉〈0|) (18b)

T̂rI (|ψ〉〈χ | ⊗ |φ〉〈ξ |) = 〈χ |φ〉(|ψ〉〈0| ⊗ |0〉〈ξ |) (18c)

T̂rE(|ψ〉〈χ | ⊗ |φ〉〈ξ |) = 〈ξ |ψ〉(|0〉〈χ | ⊗ |φ〉〈0|). (18d)

Because these superoperators are linear we can extend their action to the whole space
End(Ha ⊗Hb) since every element of End(Ha ⊗Hb) can be written as the linear combination
of the endomorphisms of the form |ψ〉〈χ | ⊗ |φ〉〈ξ |.

We can see from (18c) and (18d ) that the internal and external partial supertraces T̂rI
and T̂rE are non-trivial only for identical particles, i.e. for symmetric or antisymmetric part of
End((H ⊗ H0)⊕ (H0 ⊗ H)) (note that in this case Ha = Hb ≡ H), because in the other case
〈χ |φ〉 and 〈ξ |ψ〉 must vanish for any |ψ〉, |χ〉 ∈ Ha and |φ〉, |ξ〉 ∈ Hb.
4 We use the same symbol T̂r for the map T̂r: End(H) → End(H0) and for the map T̂r: End(Ha ⊗ Hb) →
End(H0 ⊗ H0), because the second map is the generalization of the first one in the tensor product space case.
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If we specify orthonormal bases {|a〉} and {|b〉} in the spaces Ha and Hb, respectively,
then

T̂rL(|a〉〈a′| ⊗ |b〉〈b′|) = δa′a|0〉〈0| ⊗ |b〉〈b′| (19a)

T̂rL(a〉〈a′| ⊗ |b〉〈b′|) = δb′b|a〉〈a′| ⊗ |0〉〈0| (19b)

T̂rI (|a〉〈a′| ⊗ |b〉〈b′|) = δa′b|a〉〈0| ⊗ |0〉〈b′| (19c)

T̂rE(|a〉〈a′| ⊗ |b〉〈b′|) = δb′a|0〉〈a′| ⊗ |b〉〈0|. (19d)

Remark 1. Let us note that the tensor product supertrace T̂r from definition 4 can be
constructed as the following composition of partial supertraces

T̂r = T̂rL ◦ T̂rR = T̂rR ◦ T̂rL
T̂r = T̂rI ◦ T̂rE = T̂rE ◦ T̂rI .

Remark 2. Definition 5 can be easily generalized to the case of states of more than two
particles. In such a case it is better to denote the partial supertraces by T̂rij , where we make
the scalar product from the ith vector (ket) and j th co-vector (bra) and replace them by |0〉 and
〈0|, respectively. In such a notation we have T̂rR ≡ T̂r22, T̂rL ≡ T̂r11, T̂rI ≡ T̂r21, T̂rE ≡ T̂r12.
The partial supertraces which put more than one pair of |0〉 and 〈0| can be easily obtained by
taking an appropriate composition of the partial supertraces T̂rij .

Lemma 1. If σ ∈ End(Ha ⊗ Hb) is non-negative then T̂rL(σ ) and T̂rR(σ ) are non-negative.

Proof. Let us show that T̂rL(σ ) is non-negative for a non-negative σ . Because T̂rL(σ ) ∈
End

(H0 ⊗ Hb

)
, we must show that (〈0| ⊗ 〈φ|)T̂rL(σ )(|0〉 ⊗ |φ〉) � 0 for any |φ〉 ∈ Hb.

Without loss of generality we can assume that |φ〉 is normalized, i.e. 〈φ|φ〉 = 1. Hb can be
decomposed into the linear covering of |φ〉 and the subspace H⊥

b of vectors orthogonal to |φ〉.
If the set {|b̃〉} is an orthonormal basis in H⊥

b , then the vector |φ〉 and vectors from {|b̃〉} make
an orthonormal basis in Hb. Using σ written in the basis {|a〉} in Ha and the above basis in
Hb and with the help of (19a) we get

(〈0| ⊗ 〈φ|)T̂rL(σ )(|0〉 ⊗ |φ〉) =
∑
a

σaφaφ (20)

where σaφaφ = (〈a| ⊗ 〈φ|)σ (|a〉 ⊗ |φ〉) � 0 which follows from the assumption that σ is
non-negative. Thus, indeed, non-negativeness of σ implies non-negativeness of T̂rL(σ ). The
proof for T̂rR(σ ) is analogous. �

Note that the analogous proof of non-negativeness for the usual partial traces can be
found, for example, in [8].

5. Destruction in a system of two distinguishable particles

Now we consider the destruction of a two-particle system of distinguishable particles. Let
a density matrix of the form (11) describe a system of two distinguishable particles ‘a’ and
‘b’. The apparatus mentioned in section 1 destroys the particles if the outcomes of the
measurements of observables �̂a and �̂b lie in the subsets �a and �b of spectra �a of �̂a

and �b of �̂b, respectively. Let ��a
be the projector onto the subspace of Ha associated with

�a and ��b
be the projector onto the subspace of Hb associated with �b. Now we perform a

simultaneous measurement of the observables ��a
⊗ Ib and Ia ⊗ ��b

(Ia and Ib denote the
identity operators in Ha and Hb, respectively). Thus just after the measurement we have the
following four possible outcomes:
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(i) the measurement of ��a
⊗ Ib and Ia ⊗��b

both give 0—there are no particles to destroy
and the final state is a two-particle state;

(ii) the measurement of ��a
⊗ Ib gives 0 and the measurement of Ia ⊗ ��b

gives 1—the
particle ‘b’ is to destroy and the final state is a one-particle state of the particle ‘a’;

(iii) the measurement of ��a
⊗ Ib gives 1 and the measurement of Ia ⊗ ��b

gives 0—the
particle ‘a’ is to destroy and the final state is a one-particle state of the particle ‘b’;

(iv) the measurement of ��a
⊗ Ib and Ia ⊗ ��b

both give 1—the particles ‘a’ and ‘b’ are to
destroy and the final state is the vacuum state.

One can easily verify the operators �⊥
�a

⊗ �⊥
�b

, �⊥
�a

⊗ ��b
, ��a

⊗ �⊥
�b

and ��a
⊗ ��b

,
where �⊥

�a
≡ Ia − ��a

and �⊥
�b

≡ Ib − ��b
are the projectors on mutually orthogonal

subspaces associated with the cases (i)–(iv), respectively. The probabilities for each of
these four situations are Tr

[
ρ
(
�⊥

�a
⊗ �⊥

�b

)]
, Tr

[
ρ

(
�⊥

�a
⊗ ��b

)]
, Tr

[
ρ

(
��a

⊗ �⊥
�b

)]
and

Tr
[
ρ

(
��a

⊗ ��b

)]
, respectively.

Now, in an analogy to the definitions 2 and 3, to destroy �a- and �b-projected parts of
the density matrix ρ we apply appropriately the T̂rL (T̂rR) to the �a- (�b-) projected part of
ρ as well as T̂r to the �a- and �b-projected part, and we arrive at the following definitions.

Definition 6. The destruction with selection in the set � of two-particle state ρ ∈
End(Ha ⊗ Hb) of distinguishable particles is defined by the map Ds

�: End(Ha ⊗ Hb) →
End(Ha ⊗ Hb) ⊕ End

(Ha ⊗ H0
) ⊕ End

(H0 ⊗ Hb

) ⊕ End(H0 ⊗ H0) of the form

Ds
�(ρ) =




(
�⊥

�a
⊗ �⊥

�b

)
ρ
(
�⊥

�a
⊗ �⊥

�b

)
Tr

[
ρ
(
�⊥

�a
⊗ �⊥

�b

)] for outcome (i)

T̂rR
[(
�⊥

�a
⊗��b

)
ρ
(
�⊥

�a
⊗ ��b

)]
Tr

[
ρ
(
�⊥

�a
⊗ ��b

)] for outcome (ii)

T̂rL
[(
��a

⊗�⊥
�b

)
ρ
(
��a

⊗ �⊥
�b

)]
Tr

[
ρ
(
��a

⊗ �⊥
�b

)] for outcome (iii)

T̂r
[(
��a

⊗ ��b

)
ρ
(
��a

⊗ ��b

)]
Tr

[
ρ
(
��a

⊗ ��b

)] for outcome (iv).

(21)

Definition 7. The destruction with no selection in the set � of two-particle state ρ ∈
End(Ha ⊗ Hb) of distinguishable particles is defined by the map D�: End(Ha ⊗ Hb) →
End(Ha ⊗ Hb) ⊕ End

(Ha ⊗ H0
) ⊕ End

(H0 ⊗ Hb

) ⊕ End(H0 ⊗ H0), such that

D�(ρ) = (
�⊥

�a
⊗ �⊥

�b

)
ρ
(
�⊥

�a
⊗ �⊥

�b

)
+ T̂rR

[(
�⊥

�a
⊗ ��b

)
ρ
(
�⊥

�a
⊗��b

)]
+ T̂rL

[(
��a

⊗ �⊥
�b

)
ρ
(
��a

⊗�⊥
�b

)]
+ T̂r

[(
��a

⊗ ��b

)
ρ
(
��a

⊗ ��b

)]
.

(22)

Proposition 2. The superoperators Ds
� and D� from definitions 6 and 7, respectively, are

Kraus maps.

Proof. The verification that Ds
�(ρ) and D�(ρ) are Hermitian is trivial. Taking the

density matrix ρ in the form (11) one can easily check by straightforward calculation that
Tr

(
Ds

�(ρ)
) = Tr(ρ) = 1 for every outcome (i)–(iv). Now,

Tr(D�(ρ)) = Tr
[
ρ

(
�⊥

�a
⊗ �⊥

�b

)]
+ Tr

[
ρ

(
�⊥

�a
⊗��b

)]
+ Tr

[
ρ

(
��a

⊗ �⊥
�b

)]
+ Tr

[
ρ

(
��a

⊗ ��b

)] = Tr(ρ) = 1. (23)
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�⊥

�a
⊗ �⊥

�b

)
ρ

(
�⊥

�a
⊗ �⊥

�b

)
is an orthogonal projection of a non-negative ρ,

so it is non-negative. Similarly, the entries
(
�⊥

�a
⊗ ��b

)
ρ

(
�⊥

�a
⊗ ��b

)
and(

��a
⊗ �⊥

�b

)
ρ

(
��a

⊗ �⊥
�b

)
are non-negative. Therefore, using lemma 1 we can see

that T̂rR
[(
�⊥

�a
⊗��b

)
ρ

(
�⊥

�a
⊗ ��b

)]
and T̂rL

[(
��a

⊗ �⊥
�b

)
ρ

(
��a

⊗ �⊥
�b

)]
are non-

negative. T̂r
[(
��a

⊗ ��b

)
ρ

(
��a

⊗ ��b

)]
can be written as Tr

[
ρ

(
��a

⊗ ��b

)] |0〉〈0| ⊗
|0〉〈0| and it is non-negative because Tr

[
ρ

(
��a

⊗��b

)]
� 0. Thus Ds

�(ρ) is non-negative.
Since all these four terms act in mutually orthogonal subspaces, D�(ρ) is non-negative too.
Therefore Ds

� and D� are Kraus maps. �

Now, we illustrate the destruction of a two-particle system of distinguishable particles by
the following example.

Example 2. Consider the system of spin-1 and spin-0 particles. We assume that destruction
with no selection takes place if the z-component of the spin of each particle is 0. We
have �̂a = Ŝa3 and �̂b = Ŝb3. So �a = {−1, 0, 1}, �b = {0} and �a = {0},
�b = {0} (note that �b = �b, so the outcomes (i) and (ii) are excluded). We can take
Ha = span{|1, 1〉, |1, 0〉, |1,−1〉} and Hb = span{|0, 0〉}, where |j,m〉 are the basis vectors.
The projectors can be written as ��a

= |1, 0〉〈1, 0|, �⊥
�a

= |1, 1〉〈1, 1| + |1,−1〉〈1,−1| and
��b

= |0, 0〉〈0, 0|. The most general density matrix for such a state is

ρ = w1|1, 1〉〈1, 1| ⊗ |0, 0〉〈0, 0| + c1|1, 1〉〈1, 0| ⊗ |0, 0〉〈0, 0| + c2|1, 1〉〈1,−1| ⊗ |0, 0〉〈0, 0|
+ c∗

1|1, 0〉〈1, 1| ⊗ |0, 0〉〈0, 0| + (1 − w1 − w2)|1, 0〉〈1, 0| ⊗ |0, 0〉〈0, 0|
+ c3|1, 0〉〈1,−1| ⊗ |0, 0〉〈0, 0| + c∗

2|1,−1〉〈1, 1| ⊗ |0, 0〉〈0, 0|
+ c∗

3|1,−1〉〈1, 0| ⊗ |0, 0〉〈0, 0| + w2|1,−1〉〈1,−1| ⊗ |0, 0〉〈0, 0|
where the coefficientsw1, w2 ∈ [0, 1], c1, c2, c3 ∈ C and they are restricted by the requirement
that the density matrix ρ is non-negative. After the destruction we get a new state

D�(ρ) = w1|1, 1〉〈1, 1| ⊗ |0〉(0| + w2|1,−1〉〈1,−1| ⊗ |0〉〈0| + (1−w1−w2)|0〉〈0| ⊗ |0〉〈0|
(recall that |0〉 denotes the vacuum vector), so the new state is a mixture of the spin-1 particle
in the up direction (with the probability w1), the spin-1 particle in the down direction (with
the probability w2) and the vacuum (with the probability 1 − w1 − w2).

6. Destruction in a system of two identical particles

Now we consider the destruction in a state of two identical particles. In this case
Ha = Hb ≡ H. A system of two identical particles is described by a density matrix of the form
(11) together with the symmetry conditions (12a) or (12b). As in previous cases, let �� be the
projector onto the subspace of H associated with � ⊂ �. Now we perform a measurement of
the symmetrized observable��⊗I +I⊗��. The spectral decomposition of this observable is

�� ⊗ I + I ⊗ �� = 0 · �⊥
� ⊗ �⊥

� + 1 · (�⊥
� ⊗�� + �� ⊗ �⊥

�) + 2 ·�� ⊗ �� (24)

(�⊥
� = I − ��, as before), where

�⊥
� ⊗ �⊥

� corresponds to the situation that there is no particle with an eigenvalue of �̂

belonging to �,
�⊥

� ⊗ �� + �� ⊗ �⊥
� corresponds to the situation that there is exactly one particle with an

eigenvalue of �̂ belonging to �,
�� ⊗ �� corresponds to the situation that there are two particles with an eigenvalue of �̂
belonging to �.
In view of (24), just after the measurement, we have only three possibilities:
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(i) the measurement of �� ⊗ I + I ⊗ �� gives 0—there is no particle to destroy and the
final state is a two-particle state,

(ii) the measurement of �� ⊗ I + I ⊗ �� gives 1—there is exactly one particle to destroy
and the final state is a one-particle state,

(iii) the measurement of �� ⊗ I + I ⊗�� gives 2—there are two particles to destroy and the
final state is the vacuum state.

The probabilities that one of the three cases (i)–(iii) occurs are Tr[ρ(�⊥
� ⊗�⊥

�)], Tr[ρ(�⊥
� ⊗

�� + �� ⊗�⊥
�)] and Tr[ρ(�� ⊗ ��)], respectively.

In order to destroy the �-projected part of the density matrix ρ we apply the same
algorithm as in the case of distinguishable particles, but now we cannot omit T̂rI and T̂rE
because their action is non-trivial. Therefore, we can formulate the following definitions.

Definition 8. The destruction with selection in the set� of two-particle state ρ ∈ End(H⊗H)

of identical particles is defined by the map Ds
�: End(H ⊗ H) → End(H ⊗ H) ⊕ End((H ⊗

H0) ⊕ (H0 ⊗ H)) ⊕ End(H0 ⊗ H0), such that

Ds
�(ρ) = (�⊥

� ⊗ �⊥
�)ρ(�

⊥
� ⊗�⊥

�)

Tr[ρ(�⊥
� ⊗ �⊥

�)]
(25a)

Ds
�(ρ) = {T̂rR[(�⊥

� ⊗��)ρ(�
⊥
� ⊗ ��)] + T̂rL[(�� ⊗ �⊥

�)ρ(�� ⊗ �⊥
�)]

± T̂rI [(�⊥
� ⊗ ��)ρ(�� ⊗ �⊥

�)] ± T̂rE[(�� ⊗�⊥
�)ρ(�

⊥
� ⊗ ��)]}

× {Tr[ρ(�⊥
� ⊗��)] + Tr[ρ(�� ⊗ �⊥

�)]}−1 (25b)

Ds
�(ρ) = T̂r[(�� ⊗ ��)ρ(�� ⊗��)]

Tr[ρ(�� ⊗ ��)]
(25c)

for the outcomes (i), (ii) and (iii) of the measurement of �� ⊗ I + I ⊗��, respectively; where
the signs + and − correspond to symmetric and antisymmetric cases, respectively.

Definition 9. The destruction with no selection in the set � of two-particle state ρ ∈
End(H⊗H) of identical particles is defined by the map D�: End(H⊗H) → End(H⊗H)⊕
End((H ⊗ H0) ⊕ (H0 ⊗ H)) ⊕ End(H0 ⊗ H0), such that

D�(ρ) = (�⊥
� ⊗ �⊥

�)ρ(�
⊥
� ⊗ �⊥

�) + T̂rR[(�⊥
� ⊗ ��)ρ(�

⊥
� ⊗ ��)]

+ T̂rL[(�� ⊗ �⊥
�)ρ(�� ⊗ �⊥

�)] ± T̂rI [(�⊥
� ⊗ ��)ρ(�� ⊗ �⊥

�)]

± T̂rE[(�� ⊗ �⊥
�)ρ(�

⊥
� ⊗��)] + T̂r[(�� ⊗ ��)ρ(�� ⊗ ��)] (26)

where the signs + and − correspond to symmetric and antisymmetric cases, respectively.

In view of the discussion at the end of 3, we shall show the following lemma.

Lemma 2. For a symmetric or antisymmetric density matrix ρ ∈ End(H⊗H) the state given
by (25b) belongs to the irreducible one-particle subspace of End((H⊗H0)⊕ (H0 ⊗H)) (the
signs + and − correspond to symmetric and antisymmetric cases, respectively).

Proof. Let the sets of vectors {|β〉} and {|α〉} be the orthonormal basis in H� and H⊥
�,

respectively. So the set {|α〉} ∪ {|β〉} is a basis in H. Let us write the density matrix ρ in the
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form (11) using this basis. Moreover, we can write �� = ∑
β |β〉〈β| and �⊥

� = ∑
α |α〉〈α|.

Therefore, using the symmetry conditions (12a) or (12b), we get

T̂rR[(�⊥
� ⊗ ��)ρ(�

⊥
� ⊗ ��)] + T̂rL[(�� ⊗ �⊥

�)ρ(�� ⊗ �⊥
�)]

± T̂rI [(�⊥
� ⊗ ��)ρ(�� ⊗ �⊥

�)] ± T̂rE[(�� ⊗ �⊥
�)ρ(�

⊥
� ⊗ ��)]

=
∑
αα′

(∑
β

ραβα′β

)
(|α〉 ⊗ |0〉 + |0〉 ⊗ |α〉) (〈α′| ⊗ 〈0| + 〈0| ⊗ 〈α′|) (27)

so, it belongs to the one-particle irreducible subspace of End((H ⊗ H0) ⊕ (H0 ⊗ H)). �

Proposition 3. The superoperators Ds
� and D� from definitions 8 and 9, respectively, are

Kraus maps.

Proof. To prove that Ds
�(ρ) and D�(ρ) are Hermitian, we have only to check if the sum

T̂rI [(�⊥
�⊗��)ρ(��⊗�⊥

�)]+T̂rE[(��⊗�⊥
�)ρ(�

⊥
�⊗��)] is Hermitian, since the remaining

parts of (25a) or (26) are evidently Hermitian. First, observe that ((�⊥
�⊗��)ρ(��⊗�⊥

�))
† =

(�� ⊗�⊥
�)ρ(�

⊥
� ⊗��). Now, it is easy to see from definition 5 that for any endomorphism

σ ∈ End(H ⊗ H) we have (T̂rI (σ ))† = T̂rE(σ †) and vice versa. Therefore

(T̂rI [(�⊥
� ⊗ ��)ρ(�� ⊗ �⊥

�)] + T̂rE[(�� ⊗ �⊥
�)ρ(�

⊥
� ⊗ ��)])†

= T̂rE[(�� ⊗ �⊥
�)ρ(�

⊥
� ⊗ ��)] + T̂rI [(�⊥

� ⊗ ��)ρ(�� ⊗ �⊥
�)]. (28)

Thus Ds
�(ρ) and D�(ρ) are Hermitian. In order to prove that Tr(Ds

�(ρ)) = Tr(D�(ρ)) =
Tr(ρ) it is enough to note that the diagonal elements of the internal and external partial
supertraces vanish. This is evident from (19c) and (19d ). By virtue of this fact, the rest
of the proof of this point is analogous to the proof of the respective part of proposition 2.
(�⊥

� ⊗ �⊥
�)ρ(�

⊥
� ⊗ �⊥

�) and T̂r[(�� ⊗ ��)ρ(�� ⊗ ��)] are of course non-negative. The
proof that the sum

T̂rR[(�⊥
� ⊗ ��)ρ(�

⊥
� ⊗ ��)] + T̂rL[(�� ⊗ �⊥

�)ρ(�� ⊗ �⊥
�)]

± T̂rI [(�⊥
� ⊗ ��)ρ(�� ⊗ �⊥

�)] ± T̂rE[(�� ⊗�⊥
�)ρ(�

⊥
� ⊗ ��)] (29)

is non-negative is the following. Let |φ〉⊗|0〉+|0〉⊗|φ〉 be the vector from (H⊗H0)⊕(H0⊗H).
The vector |φ〉 ∈ H can be decomposed as follows |φ〉 = c|x〉 + d|y〉, where |x〉 ∈ H⊥

�,
|y〉 ∈ H�, c, d ∈ set C and 〈x|x〉 = 〈y|y〉 = 1. Next, we construct the basis in the subspace
H⊥

� as in the proof of lemma 1, with the vector |x〉 basis vector. Now, using (27) we get

(〈φ| ⊗ 〈0| + 〈0| ⊗ 〈φ|)(T̂rR[(�⊥
� ⊗ ��)ρ(�

⊥
� ⊗ ��)] + T̂rL[(�� ⊗ �⊥

�)ρ(�� ⊗ �⊥
�)]

± T̂rI [(�⊥
� ⊗ ��)ρ(�� ⊗ �⊥

�)] ± T̂rE[(�� ⊗�⊥
�)ρ(�

⊥
� ⊗ ��)])

× (|φ〉 ⊗ |0〉 + |0〉 ⊗ |φ〉) = 4|c|2
∑
β

ρxβxβ . (30)

Clearly the sum in (30) is non-negative, since ρ is non-negative. Thus Ds
�(ρ) is also non-

negative. Since the sum (29) and the other terms in (26) act in mutually orthogonal subspaces,
D�(ρ) is also non-negative. Therefore Ds

� and D� are Kraus maps. �

Now, we illustrate the destruction of two-particle system of identical particles by the
following example.

Example 3. Consider the system of two identical spin- 1
2 particles. We assume that the

destruction with no selection takes place if the z-component of the spin of any particle is 1
2 . The

observable �̂, its spectrum �, the subset �, one-particle Hilbert space H as well as projectors
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�� and �⊥
� are the same as in example 1. The two-particle space of states is antisymmetric

part of H ⊗ H, i.e. span
{

1√
2
(|↑〉 ⊗ |↓〉 − |↓〉 ⊗ |↑〉)}. This space is one-dimensional, thus the

state is a pure one, and its density matrix is of the form

ρ = 1
2 (|↑〉〈↑| ⊗ |↓〉〈↓| − |↑〉〈↓| ⊗ |↓〉〈↑| − |↓〉〈↑| ⊗ |↑〉〈↓| + |↓〉〈↓| ⊗ |↑〉〈↑|) .

After the destruction of the particles with S3 = 1
2 , we get the new state

D�(ρ) = 1
2 (|↓〉〈↓| ⊗ |0〉〈0| + |0〉〈0| ⊗ |↓〉〈↓| + |↓〉〈0| ⊗ |0〉〈↓| + |0〉〈↓| ⊗ |↓〉〈0|)

= 1
2 (|↓〉 ⊗ |0〉 + |0〉 ⊗ |↓〉) (〈↓| ⊗ 〈0| + 〈0| ⊗ 〈↓|) .

So it is really an element of one-dimensional irreducible subspace of End((H⊗H0)⊕(H0⊗H)).
It should be noted that in this case the destruction with selection gives the same result.
Because before and after the destruction we deal with the pure states the von Neumann

entropies of the initial and destroyed states are both equal to zero.

7. Conclusions

We have given a mathematical formalism which allows one to describe the destruction of a
particle from the two-particle state in the framework of quantum mechanics. This is done by
means of the reduction procedure [9] (with selection or with no selection) associated with the
immediate mapping of the part of the reduced density matrix onto the vacuum density matrix
and is based on the use of supertraces. We point out that the destruction procedure can be
treated as a supplement to the von Neumann–Lüders measurement procedure.

Moreover, our formalism of destructions, developed for the case of one-particle and two-
particle states, can be uniquely generalized to the multi-particle states, with the help of the
partial supertraces T̂rij (see remark 2). Also, it can be easily extended to the generalized
measurements by means of positive operator-valued measures (POVM) rather than orthogonal
projections.

The formalism introduced herein should be helpful in a description of the processes
when one has the system under time evolution after the destruction. This may happen in the
Einstein–Podolsky–Rosen type experiments (the destruction can take place in a detector). For
this reason the destruction procedure may also be helpful in quantum information theory. The
study of different destruction processes as well as applications of the destruction procedure to
the calculation of the EPR quantum correlations will be done in forthcoming papers.
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